login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200627 Decimal expansion of the greater of two values of x satisfying 5*x^2-4=tan(x) and 0<x<pi/2. 3
1, 4, 0, 0, 1, 0, 2, 5, 5, 5, 3, 3, 6, 9, 4, 1, 7, 4, 1, 8, 3, 1, 9, 5, 9, 3, 7, 1, 5, 7, 1, 5, 8, 5, 4, 7, 3, 0, 5, 3, 8, 8, 4, 6, 9, 6, 6, 3, 4, 1, 9, 0, 6, 0, 7, 3, 0, 4, 4, 3, 6, 4, 3, 4, 4, 5, 2, 6, 9, 3, 7, 2, 9, 0, 5, 1, 9, 5, 1, 5, 7, 0, 3, 3, 9, 8, 8, 1, 7, 5, 6, 5, 2, 3, 4, 9, 1, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A200614 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

lesser:  1.0862483073723514930516537470257901302111...

greater: 1.4001025553369417418319593715715854730538...

MATHEMATICA

a = 5; c = 4;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .9, 1.0}, WorkingPrecision -> 110]

RealDigits[r]   (* A200626 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]   (* A200627 *)

CROSSREFS

Cf. A200614.

Sequence in context: A215060 A096623 A171914 * A152889 A216273 A151905

Adjacent sequences:  A200624 A200625 A200626 * A200628 A200629 A200630

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 21:33 EST 2016. Contains 278755 sequences.