login
This site is supported by donations to The OEIS Foundation.

 

Logo

Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200627 Decimal expansion of the greater of two values of x satisfying 5*x^2-4=tan(x) and 0<x<pi/2. 3
1, 4, 0, 0, 1, 0, 2, 5, 5, 5, 3, 3, 6, 9, 4, 1, 7, 4, 1, 8, 3, 1, 9, 5, 9, 3, 7, 1, 5, 7, 1, 5, 8, 5, 4, 7, 3, 0, 5, 3, 8, 8, 4, 6, 9, 6, 6, 3, 4, 1, 9, 0, 6, 0, 7, 3, 0, 4, 4, 3, 6, 4, 3, 4, 4, 5, 2, 6, 9, 3, 7, 2, 9, 0, 5, 1, 9, 5, 1, 5, 7, 0, 3, 3, 9, 8, 8, 1, 7, 5, 6, 5, 2, 3, 4, 9, 1, 0, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A200614 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

lesser:  1.0862483073723514930516537470257901302111...

greater: 1.4001025553369417418319593715715854730538...

MATHEMATICA

a = 5; c = 4;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .9, 1.0}, WorkingPrecision -> 110]

RealDigits[r]   (* A200626 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]   (* A200627 *)

CROSSREFS

Cf. A200614.

Sequence in context: A215060 A096623 A171914 * A152889 A216273 A151905

Adjacent sequences:  A200624 A200625 A200626 * A200628 A200629 A200630

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified August 22 13:50 EDT 2014. Contains 245954 sequences.