login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200625 Decimal expansion of the greater of two values of x satisfying 5*x^2-3=tan(x) and 0<x<pi/2. 3
1, 4, 3, 4, 4, 3, 6, 7, 9, 8, 5, 3, 1, 0, 6, 4, 8, 8, 2, 7, 1, 8, 8, 6, 4, 3, 5, 1, 3, 5, 4, 3, 3, 5, 8, 5, 0, 3, 4, 3, 9, 6, 6, 8, 1, 5, 1, 2, 5, 3, 6, 8, 1, 7, 1, 8, 4, 8, 5, 3, 0, 2, 3, 6, 4, 7, 1, 1, 6, 6, 0, 5, 2, 5, 8, 3, 9, 9, 2, 6, 4, 1, 9, 5, 5, 1, 8, 5, 9, 7, 6, 8, 1, 3, 6, 1, 6, 6, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A200614 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

lesser:  0.9325170518642294819498571898931399897...

greater: 1.4344367985310648827188643513543358503...

MATHEMATICA

a = 5; c = 3;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110]

RealDigits[r]   (* A200624 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

RealDigits[r]   (* A200625 *)

CROSSREFS

Cf. A200614.

Sequence in context: A016700 A088910 A010308 * A156743 A084596 A056641

Adjacent sequences:  A200622 A200623 A200624 * A200626 A200627 A200628

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 6 11:55 EDT 2020. Contains 336246 sequences. (Running on oeis4.)