login
Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2.
3

%I #13 Jan 30 2025 12:18:13

%S 5,7,3,8,2,5,6,1,4,2,2,0,7,0,7,5,1,9,4,7,0,6,9,9,3,0,7,3,9,5,0,2,8,9,

%T 7,2,0,4,0,0,1,2,6,2,0,5,6,7,5,7,0,8,3,3,8,2,7,1,3,0,1,2,7,4,1,8,7,9,

%U 3,4,4,0,9,7,0,1,7,1,2,2,0,9,2,8,2,1,3,3,5,3,7,0,0,6,1,5,4,5,0

%N Decimal expansion of the lesser of two values of x satisfying 5*x^2 - 1 = tan(x) and 0 < x < Pi/2.

%C See A200614 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e lesser: 0.5738256142207075194706993073950289720400...

%e greater: 1.469002719513610613223362597583632411278000...

%t a = 5; c = 1;

%t f[x_] := a*x^2 - c; g[x_] := Tan[x]

%t Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .5, .6}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200620 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200621 *)

%Y Cf. A200614, A200621.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 20 2011