login
Decimal expansion of the lesser of two values of x satisfying 4*x^2 - 1 = tan(x) and 0 < x < Pi/2.
3

%I #10 Jan 30 2025 12:18:18

%S 6,6,9,1,0,2,9,7,2,0,2,3,5,7,5,4,1,6,0,7,6,6,0,1,2,5,0,1,8,8,4,5,6,9,

%T 8,2,4,5,6,2,2,7,9,4,4,3,8,7,1,8,5,6,4,3,3,0,1,1,5,8,3,0,0,2,1,7,3,9,

%U 4,9,8,4,0,8,4,2,6,3,7,2,4,5,6,0,2,7,9,3,9,0,4,3,4,2,2,9,3,7,4

%N Decimal expansion of the lesser of two values of x satisfying 4*x^2 - 1 = tan(x) and 0 < x < Pi/2.

%C See A200614 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e lesser: 0.839582259045302941513764008863804986308...

%e greater: 1.350956593976519397744696294368524715373...

%t a = 4; c = 1;

%t f[x_] := a*x^2 - c; g[x_] := Tan[x]

%t Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .6, .7}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200616 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200617 *)

%Y Cf. A200614.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 20 2011