login
Decimal expansion of the greater of two values of x satisfying 3*x^2 - 1 = tan(x) and 0 < x < Pi/2.
2

%I #10 Jan 30 2025 12:14:37

%S 1,3,5,0,9,5,6,5,9,3,9,7,6,5,1,9,3,9,7,7,4,4,6,9,6,2,9,4,3,6,8,5,2,4,

%T 7,1,5,3,7,3,0,3,7,3,0,1,6,7,5,8,8,2,5,6,2,9,7,8,8,4,4,6,2,0,4,7,6,6,

%U 0,1,7,1,8,4,6,3,4,3,8,0,2,8,2,8,5,3,9,6,5,0,6,3,4,5,9,4,4,0,6

%N Decimal expansion of the greater of two values of x satisfying 3*x^2 - 1 = tan(x) and 0 < x < Pi/2.

%C See A200614 for a guide to related sequences. The Mathematica program includes a graph.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%e lesser: 0.839582259045302941513764008863804986308...

%e greater: 1.350956593976519397744696294368524715373...

%t a = 3; c = 1;

%t f[x_] := a*x^2 - c; g[x_] := Tan[x]

%t Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200614 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200615 *)

%Y Cf. A200338.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Nov 20 2011