login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200614 Decimal expansion of the lesser of two values of x satisfying 3*x^2-1=tan(x) and 0<x<pi/2. 61
8, 3, 9, 5, 8, 2, 2, 5, 9, 0, 4, 5, 3, 0, 2, 9, 4, 1, 5, 1, 3, 7, 6, 4, 0, 0, 8, 8, 6, 3, 8, 0, 4, 9, 8, 6, 3, 0, 8, 4, 1, 6, 5, 4, 1, 0, 2, 6, 9, 4, 4, 0, 9, 0, 0, 3, 3, 4, 9, 1, 4, 3, 4, 0, 6, 7, 6, 5, 8, 4, 1, 4, 6, 1, 0, 4, 1, 1, 6, 7, 4, 2, 5, 9, 5, 3, 5, 3, 0, 0, 2, 3, 6, 6, 2, 4, 6, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

For many choices of a and c, there are exactly two values of x satisfying a*x^2-c=tan(x) and 0<x<pi/2; for other choices, there is exactly once such value.

Guide to related sequences, with graphs included in Mathematica programs:

a.... c.... x

3.... 1.... A200614, A200615

4.... 1.... A200616, A200617

5.... 1.... A200620, A200621

5.... 2.... A200622, A200623

5.... 3.... A200624, A200625

5.... 4.... A200626, A200627

5... -1.... A200628

5... -2.... A200629

5... -3.... A200630

5... -4.... A200631

6.... 1.... A200633, A200634

6.... 5.... A200635, A200636

6... -1.... A200637

6... -5.... A200638

1... -5.... A200239

2... -5.... A200240

3... -5.... A200241

4... -5.... A200242

2.... 0.... A200679, A200680

3.... 0.... A200681, A200682

4.... 0.... A200683, A200684

5.... 0.... A200618

6.... 0.... A200632

7.... 0.... A200643

8.... 0.... A200644

9.... 0.... A200645

10... 0.... A200646

-1... 1.... A200685

-1... 2.... A200686

-1... 3.... A200687

-1... 4.... A200688

-1... 5.... A200689

-1... 6.... A200690

-1... 7.... A200691

-1... 8.... A200692

-1... 9.... A200693

-1... 10... A200694

-2... 1.... A200695

-2... 3.... A200696

-3... 1.... A200697

-3... 2.... A200698

-4... 1.... A200699

-5... 1.... A200700

-6... 1.... A200701

-7... 1.... A200702

-8... 1.... A200703

-9... 1.... A200704

-10.. 1.... A200705

Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0.  We call the graph of z=g(u,v) an implicit surface of f.

For an example related to A200614, take f(x,u,v)=u*x^2-v=tan(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0.  If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous.  A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

lesser:  0.839582259045302941513764008863804986308...

greater: 1.350956593976519397744696294368524715373...

MATHEMATICA

(* Program 1:  A200614 and A200615 *)

a = 3; c = 1;

f[x_] := a*x^2 - c; g[x_] := Tan[x]

Plot[{f[x], g[x]}, {x, -.1, Pi/2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]

RealDigits[r]   (* A200614 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]

RealDigits[r]   (* A200615 *)

(* Program 2: implicit surface of u*x^2-v=tan(x) *)

f[{x_, u_, v_}] := u*x^2 - v - Tan[x];

t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.55}]}, {u, 1, 20}, {v, -20, 0}];

ListPlot3D[Flatten[t, 1]]  (* for A200614 *)

CROSSREFS

Cf. A200615, A200338.

Sequence in context: A058265 A135005 A090734 * A011467 A246671 A069610

Adjacent sequences:  A200611 A200612 A200613 * A200615 A200616 A200617

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 20 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 21 02:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)