The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200614 Decimal expansion of the lesser of two values of x satisfying 3*x^2-1=tan(x) and 0
 8, 3, 9, 5, 8, 2, 2, 5, 9, 0, 4, 5, 3, 0, 2, 9, 4, 1, 5, 1, 3, 7, 6, 4, 0, 0, 8, 8, 6, 3, 8, 0, 4, 9, 8, 6, 3, 0, 8, 4, 1, 6, 5, 4, 1, 0, 2, 6, 9, 4, 4, 0, 9, 0, 0, 3, 3, 4, 9, 1, 4, 3, 4, 0, 6, 7, 6, 5, 8, 4, 1, 4, 6, 1, 0, 4, 1, 1, 6, 7, 4, 2, 5, 9, 5, 3, 5, 3, 0, 0, 2, 3, 6, 6, 2, 4, 6, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS For many choices of a and c, there are exactly two values of x satisfying a*x^2-c=tan(x) and 0 {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110] RealDigits[r]   (* A200614 *) r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110] RealDigits[r]   (* A200615 *) (* Program 2: implicit surface of u*x^2-v=tan(x) *) f[{x_, u_, v_}] := u*x^2 - v - Tan[x]; t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1.55}]}, {u, 1, 20}, {v, -20, 0}]; ListPlot3D[Flatten[t, 1]]  (* for A200614 *) CROSSREFS Cf. A200615, A200338. Sequence in context: A058265 A135005 A090734 * A011467 A246671 A069610 Adjacent sequences:  A200611 A200612 A200613 * A200615 A200616 A200617 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 20 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 02:02 EST 2020. Contains 332086 sequences. (Running on oeis4.)