This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200580 Sum of dimension exponents of supercharacter of unipotent upper triangular matrices. 4
0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097 (list; graph; refs; listen; history; text; internal format)



Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n}

  such that (i,j) in P implies (i,k),(k,j) are not in P for all i<l<j.

The dimension of the representation associated to the supercharacter indexed by P is given by 2^Dim(P) where Dim(P) = sum [ j-i , (i,j) in P ].

The sequence we have is a(n) = sum [ Dim(P) , P in S(n) ].


C. Andre, Basic characters of the unitriangular group, Journal of algebra, 175 (1995), 287-319.

B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for averages of set partition statistics, http://math.stanford.edu/~rhoades/FILES/setpartitions.pdf, 2013.


Vincenzo Librandi, Table of n, a(n) for n = 0..200

M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I.M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C.R. Vinroot, N. Yan, M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras


a(n) = -2*B(n+2) + (n+4)*B(n+1) where B(i) = Bell numbers A000110. [Chern et al.] - N. J. A. Sloane, Jun 10 2013


b:=proc(n, k) option remember;

  if n=1 and k=1 then RETURN(1) fi;

  if k=1 then RETURN(b(n-1, n-1)) fi;

  b(n, k-1)+b(n-1, k-1)


a:=proc(n) local res, k;


  for k to n-1 do res:=res+k*(n-k)*b(n, k) od;



seq(a(n), n=1..34);


Table[-2 BellB[n+3] + (n+5) BellB[n+2], {n, 1, 30}] (* Vincenzo Librandi, Jul 16 2013 *)


(MAGMA) [-2*Bell(n+3)+(n+5)*Bell(n+2): n in [1..30]]; // Vincenzo Librandi, Jul 16 2013


Cf. A011971 (sequence is computed from the Aitken's array b(n,k)

  a(n) = sum [ k*(n-k)*b(n,k), k=1..n-1 ]).

Cf. A200660, A200673 (other statistics related to supercharacter theory).

Cf. A000110, A226507.

Sequence in context: A016211 A055424 A243878 * A181678 A206817 A159687

Adjacent sequences:  A200577 A200578 A200579 * A200581 A200582 A200583




Nantel Bergeron, Nov 19 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 13:34 EST 2015. Contains 264571 sequences.