This site is supported by donations to The OEIS Foundation.



The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200580 Sum of dimension exponents of supercharacter of unipotent upper triangular matrices. 4
0, 1, 10, 73, 490, 3246, 21814, 150535, 1072786, 7915081, 60512348, 479371384, 3932969516, 33392961185, 293143783762, 2658128519225, 24872012040510, 239916007100054, 2383444110867378, 24363881751014383, 256034413642582418, 2763708806499744097 (list; graph; refs; listen; history; text; internal format)



Supercharacter theory of unipotent upper triangular matrices over a finite field F(2) is indexed by set partitions S(n) of {1,2,..., n} where a set partition P of {1,2,..., n} is a subset { (i,j) : 1 <= i < j <= n}

  such that (i,j) in P implies (i,k),(k,j) are not in P for all i<l<j.

The dimension of the representation associated to the supercharacter indexed by P is given by 2^Dim(P) where Dim(P) = sum [ j-i , (i,j) in P ].

The sequence we have is a(n) = sum [ Dim(P) , P in S(n) ].


C. Andre, Basic characters of the unitriangular group, Journal of algebra, 175 (1995), 287-319.

B. Chern, P. Diaconis, D. M. Kane, R. C. Rhoades, Closed expressions for averages of set partition statistics, http://math.stanford.edu/~rhoades/FILES/setpartitions.pdf, 2013.


Vincenzo Librandi, Table of n, a(n) for n = 0..200

M. Aguiar, C. Andre, C. Benedetti, N. Bergeron, Z. Chen, P. Diaconis, A. Hendrickson, S. Hsiao, I.M. Isaacs, A. Jedwab, K. Johnson, G. Karaali, A. Lauve, T. Le, S. Lewis, H. Li, K. Magaard, E. Marberg, J-C. Novelli, A. Pang, F. Saliola, L. Tevlin, J-Y. Thibon, N. Thiem, V. Venkateswaran, C.R. Vinroot, N. Yan, M. Zabrocki, Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras


a(n) = -2*B(n+2) + (n+4)*B(n+1) where B(i) = Bell numbers A000110. [Chern et al.] - N. J. A. Sloane, Jun 10 2013


b:=proc(n, k) option remember;

  if n=1 and k=1 then RETURN(1) fi;

  if k=1 then RETURN(b(n-1, n-1)) fi;

  b(n, k-1)+b(n-1, k-1)


a:=proc(n) local res, k;


  for k to n-1 do res:=res+k*(n-k)*b(n, k) od;



seq(a(n), n=1..34);


Table[-2 BellB[n+3] + (n+5) BellB[n+2], {n, 1, 30}] (* Vincenzo Librandi, Jul 16 2013 *)


(MAGMA) [-2*Bell(n+3)+(n+5)*Bell(n+2): n in [1..30]]; // Vincenzo Librandi, Jul 16 2013


Cf. A011971 (sequence is computed from the Aitken's array b(n,k)

  a(n) = sum [ k*(n-k)*b(n,k), k=1..n-1 ]).

Cf. A200660, A200673 (other statistics related to supercharacter theory).

Cf. A000110, A226507.

Sequence in context: A016211 A055424 A243878 * A181678 A206817 A159687

Adjacent sequences:  A200577 A200578 A200579 * A200581 A200582 A200583




Nantel Bergeron, Nov 19 2011



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 03:05 EDT 2017. Contains 287211 sequences.