login
Initial primes in prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) preceding the maximal gaps in A200503.
3

%I #25 Jan 15 2019 20:22:02

%S 7,97,19417,43777,3400207,11664547,37055647,82984537,89483827,

%T 94752727,381674467,1569747997,2019957337,5892947647,6797589427,

%U 14048370097,23438578897,24649559647,29637700987,29869155847,45555183127,52993564567,58430706067,93378527647

%N Initial primes in prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) preceding the maximal gaps in A200503.

%C Prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) are densest permissible constellations of 6 primes. The maximal gaps between prime sextuplets are listed in A200503; see further comments there.

%H Alexei Kourbatov, <a href="/A200504/b200504.txt">Table of n, a(n) for n = 1..56</a>

%H Tony Forbes, <a href="http://anthony.d.forbes.googlepages.com/ktpatt.txt">List of all possible patterns of prime k-tuplets (up to k=50)</a>

%H Alexei Kourbatov, <a href="http://www.javascripter.net/math/primes/maximalgapsbetweenktuples.htm#6tuples">Maximal gaps between prime k-tuples</a>

%H Alexei Kourbatov and Marek Wolf, <a href="http://arxiv.org/abs/1901.03785">Predicting maximal gaps in sets of primes</a>, arXiv preprint arXiv:1901.03785 [math.NT], 2019.

%e Two smallest prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) start at p=7 and p=97; so a(1)=7. The gap of 15960 between sextuplets starting at p=97 and p=16057 is a maximal gap - larger than any preceding gap; so a(2)=97. The next gap is smaller, so 16057 is not in A200504. The gap of 24360 after the sextuplet starting at p=19417 is a maximal gap, therefore a(3)=19417; and so on.

%Y Cf. A022008 (prime sextuplets), A200503, A233426.

%K nonn,hard

%O 1,1

%A _Alexei Kourbatov_, Nov 18 2011