

A200504


Initial primes in prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) preceding the maximal gaps in A200503.


3



7, 97, 19417, 43777, 3400207, 11664547, 37055647, 82984537, 89483827, 94752727, 381674467, 1569747997, 2019957337, 5892947647, 6797589427, 14048370097, 23438578897, 24649559647, 29637700987, 29869155847, 45555183127, 52993564567, 58430706067, 93378527647
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) are densest permissible constellations of 6 primes. The maximal gaps between prime sextuplets are listed in A200503; see further comments there.


LINKS

Alexei Kourbatov, Table of n, a(n) for n = 1..56
Tony Forbes, List of all possible patterns of prime ktuplets (up to k=50)
Alexei Kourbatov, Maximal gaps between prime ktuples
Alexei Kourbatov and Marek Wolf, Predicting maximal gaps in sets of primes, arXiv preprint arXiv:1901.03785 [math.NT], 2019.


EXAMPLE

Two smallest prime sextuplets (p, p+4, p+6, p+10, p+12, p+16) start at p=7 and p=97; so a(1)=7. The gap of 15960 between sextuplets starting at p=97 and p=16057 is a maximal gap  larger than any preceding gap; so a(2)=97. The next gap is smaller, so 16057 is not in A200504. The gap of 24360 after the sextuplet starting at p=19417 is a maximal gap, therefore a(3)=19417; and so on.


CROSSREFS

Cf. A022008 (prime sextuplets), A200503, A233426.
Sequence in context: A201063 A157035 A022008 * A267641 A267669 A288681
Adjacent sequences: A200501 A200502 A200503 * A200505 A200506 A200507


KEYWORD

nonn,hard


AUTHOR

Alexei Kourbatov, Nov 18 2011


STATUS

approved



