login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200407 The x-values in the solution to 19*x^2 - 18 = y^2. 1
1, 9, 131, 209, 3051, 44539, 71059, 1037331, 15143129, 24159851, 352689489, 5148619321, 8214278281, 119913388929, 1750515426011, 2792830455689, 40770199546371, 595170096224419, 949554140655979, 13861747932377211, 202356082200876449, 322845614992577171 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

When are both n+1 and 19*n+1 perfect squares? This gives the equation 19*x^2-18=y^2.

LINKS

Table of n, a(n) for n=1..22.

Index entries for linear recurrences with constant coefficients, signature (0,0,340,0,0,-1).

FORMULA

a(n)=340*a(n-3)+a(n-6), a(1)=1, a(2)=9, a(3)=131, a(4)=209, a(5)=3051, a(6)=44539.

G.f.: -x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1) / (x^6-340*x^3+1). - Colin Barker, Sep 01 2013

EXAMPLE

a(7)=340*209-1=71059.

MATHEMATICA

LinearRecurrence[{0, 0, 340, 0, 0, -1}, {1, 9, 131, 209, 3051, 44539}, 50]

PROG

(PARI) Vec(-x*(x-1)*(x^4+10*x^3+141*x^2+10*x+1)/(x^6-340*x^3+1) + O(x^100)) \\ Colin Barker, Sep 01 2013

CROSSREFS

Cf. A199773, A199774, A199798, A200409.

Sequence in context: A075762 A060944 A299596 * A194895 A112123 A282820

Adjacent sequences:  A200404 A200405 A200406 * A200408 A200409 A200410

KEYWORD

nonn

AUTHOR

Sture Sjöstedt, Nov 17 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 20:40 EDT 2019. Contains 322291 sequences. (Running on oeis4.)