This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200376 G.f.: 1/sqrt(1-10*x^2 + x^4/(1-8*x^2)) + x/(1-9*x^2). 2
 1, 1, 5, 9, 37, 81, 301, 729, 2549, 6561, 22045, 59049, 193029, 531441, 1703469, 4782969, 15111573, 43046721, 134539837, 387420489, 1200901157, 3486784401, 10739313997, 31381059609, 96172251061, 282429536481, 862142190941, 2541865828329, 7734936371269, 22876792454961, 69439155241581 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS FORMULA G.f. satisfies: A(x) = sqrt(1 + 2*x*A(x) + 9*x^2*A(x)^2). - Paul D. Hanna, Nov 18 2014 Let G(x) = g.f. of A200375, then g.f. A(x) satisfies: (1) A(x) = x/Series_Reversion(x*G(x)), (2) A(x) = G(x/A(x)) and G(x) = A(x*G(x)), where A200375(n) = A000108(n)*A001045(n), the product of Catalan and Jacobsthal numbers. a(n) ~ 3^(n-1). - Vaclav Kotesovec, Jun 29 2013 EXAMPLE G.f.: A(x) = 1 + x + 5*x^2 + 9*x^3 + 37*x^4 + 81*x^5 + 301*x^6 + 729*x^7 +... The g.f. of A200375(n) = A000108(n)*A001045(n) begins: G(x) = 1 + x + 2*3*x^2 + 5*5*x^3 + 14*11*x^4 + 42*21*x^5 + 132*43*x^6 +... where A(x) = G(x/A(x)) and G(x) = A(x*G(x)). Conjecture: n*a(n) +(n-1)*a(n-1) +(24-17*n)*a(n-2) +(41-17*n)*a(n-3) +72*(n-3)*a(n-4) +72*(n-4)*a(n-5)=0. - R. J. Mathar, Nov 17 2011 MATHEMATICA CoefficientList[Series[1/Sqrt[1-10x^2+x^4/(1-8x^2)]+x/(1-9x^2), {x, 0, 30}], x] (* Harvey P. Dale, Nov 19 2011 *) PROG (PARI) {a(n)=polcoeff(1/sqrt(1-10*x^2 + x^4/(1-8*x^2 +x*O(x^n))) + x/(1-9*x^2 +x*O(x^n)), n)} for(n=0, 30, print1(a(n), ", ")) (PARI) {a(n)=local(G=sum(m=0, n, binomial(2*m, m)/(m+1)*polcoeff(1/(1-x-2*x^2+x*O(x^m)), m)*x^m)+x*O(x^n)); polcoeff(x/serreverse(x*G), n)} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A200375, A098615, A098617. Sequence in context: A239546 A083832 A070969 * A098477 A243762 A303801 Adjacent sequences:  A200373 A200374 A200375 * A200377 A200378 A200379 KEYWORD nonn AUTHOR Paul D. Hanna, Nov 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 14 09:18 EST 2019. Contains 329979 sequences. (Running on oeis4.)