This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200323 For each composite m = A002808(n), a(n) is the smallest number k for which the equation x^m + (x+k)^m = (x+k+1)^m (mod m) has no solution, where x = 0..m-1. 0
 2, 3, 2, 3, 3, 2, 2, 1, 2, 3, 2, 7, 2, 2, 1, 2, 3, 2, 3, 2, 1, 2, 1, 2, 3, 1, 2, 3, 2, 3, 4, 2, 2, 3, 2, 2, 3, 1, 2, 1, 3, 2, 2, 3, 2, 4, 3, 2, 1, 3, 2, 2, 1, 2, 2, 2, 2, 3, 2, 2, 3, 3, 2, 2, 3, 3, 2, 3, 4, 1, 2, 2, 1, 2, 3, 2, 7, 3, 2, 3, 2, 2, 3, 1, 2, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS EXAMPLE a(12) = 7 because A002808(12) = 21 and the equation x^21 + (x+7)^21 = (x+8)^21 (mod 21)has no solution. MAPLE for n from 1 to 120 do: i:=0:for k from 1 to 500 while(i=0) do :ii:=0:for x from 0 to n-1 do:if x^n+(x+k)^n -(x+k+1)^n mod n =0 then ii:=ii+1:else fi:od: if ii=0 then i:=1:printf(`%d, `, k):else fi:od:od: CROSSREFS Cf. A002808,  A200046. Sequence in context: A138960 A115397 A218656 * A075370 A030350 A026240 Adjacent sequences:  A200320 A200321 A200322 * A200324 A200325 A200326 KEYWORD nonn AUTHOR Michel Lagneau, Nov 16 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 23 07:10 EDT 2013. Contains 225585 sequences.