OFFSET
1,2
FORMULA
E.g.f.: Series_Reversion(1+x - exp(x^2)).
E.g.f.: x + Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x^2)-1)^n / n!.
E.g.f.: x*exp( Sum_{n>=1} d^(n-1)/dx^(n-1) (exp(x^2)-1)^n/x / n! ).
a(n) ~ (c/2)^(1/4) * n^(n-1) / (sqrt(1+c) * exp(n) * (1+sqrt(c/2)-1/sqrt(2*c))^(n-1/2)), where c = LambertW(1/2) = 0.351733711249195826... (see A202356). - Vaclav Kotesovec, Jan 10 2014
EXAMPLE
E.g.f.: A(x) = x + 2*x^2/2! + 12*x^3/3! + 132*x^4/4! + 2040*x^5/5! +...
where A(1+x - exp(x^2)) = x and A(x) = x-1 + exp(A(x)^2).
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[1 - E^x^2 + x, {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 10 2014 *)
PROG
(PARI) {a(n)=n!*polcoeff(serreverse(1+x-exp(x^2+x^2*O(x^n))), n)}
for(n=1, 25, print1(a(n), ", "))
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x); A=x+sum(m=1, n, Dx(m-1, (exp(x^2+x*O(x^n))-1)^m)/m!); n!*polcoeff(A, n)}
(PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}
{a(n)=local(A=x+x^2+x*O(x^n)); A=x*exp(sum(m=1, n, Dx(m-1, (exp(x^2+x*O(x^n))-1)^m/x)/m!)+x*O(x^n)); n!*polcoeff(A, n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 15 2011
STATUS
approved