%I #37 Feb 07 2024 03:38:54
%S 1,2,6,22,84,308,1090,3782,13000,44504,152102,519506,1773948,6056932,
%T 20680010,70606382,241065744,823050480,2810070734,9594182314,
%U 32756588164,111837988444,381838777906,1303679135238,4451038985688,15196797672872,51885112720758,177146855537986
%N Number of permutations of [1..n] that can be drawn on a circle.
%H Vincent Vatter and Steve Waton: <a href="https://doi.org/10.37236/710">On Points Drawn from a Circle</a>, Electronic J. Combin., 18 (2011), # P223.
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (7,-17,19,-10,2).
%F Vatter and Waton give a g.f.
%F G.f.: x*(2*x^5-4*x^4+5*x^3-9*x^2+5*x-1) / ((x-1)^3*(2*x^2-4*x+1)). - _Colin Barker_, Jul 05 2013
%t Rest[CoefficientList[Series[x (2x^5-4x^4+5x^3-9x^2+5x-1)/((x-1)^3 (2x^2- 4x+ 1)),{x,0,30}],x]] (* _Harvey P. Dale_, Sep 29 2013 *)
%K nonn,easy
%O 1,2
%A _N. J. A. Sloane_, Nov 29 2011