login
A200301
Decimal expansion of least x satisfying 4*x^2 - 3*cos(x) = 3*sin(x), negated.
2
5, 2, 3, 7, 7, 4, 1, 5, 6, 7, 5, 3, 2, 5, 5, 7, 2, 1, 7, 1, 7, 8, 4, 0, 4, 9, 6, 7, 3, 9, 4, 4, 5, 2, 8, 5, 3, 9, 0, 6, 0, 2, 4, 7, 1, 1, 0, 3, 1, 6, 0, 9, 9, 7, 1, 6, 8, 4, 8, 7, 8, 1, 5, 3, 9, 7, 3, 9, 2, 9, 3, 2, 3, 9, 5, 9, 6, 2, 6, 5, 2, 2, 3, 5, 6, 8, 4, 2, 6, 0, 2, 5, 3, 5, 8, 7, 5, 3, 6
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.52377415675325572171784049673944...
greatest x: 1.01614395672355873379945590129...
MATHEMATICA
a = 4; b = -3; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.54, -.51}, WorkingPrecision -> 110]
RealDigits[r] (* A200297 *)
r = x /. FindRoot[f[x] == g[x], {x, 1, 1.03}, WorkingPrecision -> 110]
RealDigits[r] (* A200298 *)
PROG
(PARI) a=4; b=-3; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
CROSSREFS
Cf. A199949.
Sequence in context: A205294 A372806 A131567 * A114746 A364456 A353617
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved