login
A200299
Decimal expansion of least x satisfying 4*x^2 - 3*cos(x) = sin(x), negated.
3
6, 6, 1, 8, 2, 6, 1, 4, 1, 1, 8, 8, 8, 5, 0, 9, 9, 3, 7, 4, 3, 0, 2, 6, 1, 2, 3, 3, 5, 7, 0, 9, 4, 9, 8, 9, 9, 7, 5, 1, 0, 6, 5, 0, 4, 6, 2, 1, 0, 8, 6, 4, 2, 4, 6, 4, 5, 8, 2, 2, 2, 9, 2, 0, 0, 8, 7, 1, 3, 6, 7, 6, 2, 5, 6, 7, 4, 1, 1, 2, 3, 6, 0, 8, 5, 7, 6, 5, 1, 0, 0, 8, 9, 0, 2, 7, 5, 3, 4
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.661826141188850993743026123357094...
greatest x: 0.8308503276605474027666209935665...
MATHEMATICA
a = 4; b = -3; c = 1;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.67, -.66}, WorkingPrecision -> 110]
RealDigits[r] (* A200299 *)
r = x /. FindRoot[f[x] == g[x], {x, .83, .84}, WorkingPrecision -> 110]
RealDigits[r] (* A200300 *)
PROG
(PARI) a=4; b=-3; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
CROSSREFS
Cf. A199949.
Sequence in context: A073012 A102522 A201672 * A254134 A194597 A105817
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved