login
A200297
Decimal expansion of least x satisfying 4*x^2-3*cos(x)=2*sin(x).
5
5, 8, 8, 4, 7, 0, 8, 6, 9, 2, 8, 6, 8, 5, 2, 6, 1, 6, 4, 9, 9, 7, 9, 8, 6, 4, 8, 5, 6, 0, 3, 6, 6, 1, 8, 8, 2, 9, 8, 3, 2, 9, 5, 4, 3, 1, 0, 7, 1, 1, 9, 3, 6, 5, 0, 0, 9, 1, 7, 5, 7, 7, 4, 4, 8, 9, 7, 9, 1, 0, 8, 7, 6, 1, 0, 5, 0, 6, 5, 4, 1, 1, 8, 9, 1, 8, 1, 9, 7, 5, 0, 0, 7, 4, 4, 7, 5, 3, 6
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.58847086928685261649979864856036...
greatest x: 0.922697336548314794603906551791...
MATHEMATICA
a = 4; b = -3; c = 2;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.59, -.58}, WorkingPrecision -> 110]
RealDigits[r] (* A200297 *)
r = x /. FindRoot[f[x] == g[x], {x, .92, .93}, WorkingPrecision -> 110]
RealDigits[r] (* A200298 *)
PROG
(PARI) a=4; b=-3; c=2; solve(x=-.59, -.58, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018
CROSSREFS
Cf. A199949.
Sequence in context: A007450 A303816 A342647 * A155735 A153611 A068470
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved