login
A200296
Decimal expansion of greatest x satisfying 4*x^2 - 2*cos(x) = 3*sin(x).
3
9, 4, 9, 1, 4, 5, 7, 1, 9, 4, 2, 3, 0, 0, 9, 8, 4, 4, 8, 1, 8, 9, 1, 9, 6, 7, 0, 8, 5, 7, 2, 5, 6, 6, 1, 0, 8, 7, 9, 0, 6, 6, 3, 3, 3, 0, 0, 2, 9, 8, 9, 2, 3, 1, 7, 5, 6, 2, 8, 7, 1, 6, 4, 0, 4, 2, 2, 9, 8, 6, 6, 4, 6, 6, 4, 9, 9, 0, 2, 8, 0, 0, 7, 2, 8, 4, 5, 1, 8, 0, 1, 9, 4, 7, 2, 4, 3, 7, 8
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.40500714967330681353010125636730...
greatest x: 0.949145719423009844818919670857...
MATHEMATICA
a = 4; b = -2; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.41, -.40}, WorkingPrecision -> 110]
RealDigits[r] (* A200295 *)
r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110]
RealDigits[r] (* A200296 *)
PROG
(PARI) a=4; b=-2; c=3; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
CROSSREFS
Cf. A199949.
Sequence in context: A092736 A019617 A372276 * A021517 A154977 A309643
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved