login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200295 Decimal expansion of least x satisfying 4*x^2 - 2*cos(x) = 3*sin(x), negated. 3
4, 0, 5, 0, 0, 7, 1, 4, 9, 6, 7, 3, 3, 0, 6, 8, 1, 3, 5, 3, 0, 1, 0, 1, 2, 5, 6, 3, 6, 7, 3, 0, 1, 2, 9, 4, 7, 4, 7, 4, 6, 9, 7, 5, 9, 6, 2, 6, 2, 8, 2, 3, 1, 1, 5, 4, 6, 1, 0, 3, 4, 9, 1, 3, 8, 3, 3, 9, 0, 8, 0, 9, 3, 5, 8, 3, 8, 0, 4, 1, 8, 0, 5, 9, 0, 0, 8, 1, 2, 7, 9, 6, 0, 9, 3, 2, 7, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.40500714967330681353010125636730...
greatest x: 0.949145719423009844818919670857...
MATHEMATICA
a = 4; b = -2; c = 3;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.41, -.40}, WorkingPrecision -> 110]
RealDigits[r] (* A200295 *)
r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110]
RealDigits[r] (* A200296 *)
PROG
(PARI) a=4; b=-2; c=3; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018
CROSSREFS
Cf. A199949.
Sequence in context: A126836 A055241 A055242 * A352167 A089389 A046779
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 15 2011
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 07:55 EDT 2024. Contains 371769 sequences. (Running on oeis4.)