login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200291 Decimal expansion of least x satisfying 4*x^2 - cos(x) = 4*sin(x), negated. 3
2, 0, 4, 4, 2, 5, 5, 0, 1, 5, 3, 7, 7, 8, 0, 7, 1, 3, 1, 3, 6, 4, 9, 2, 9, 3, 9, 8, 7, 9, 7, 9, 5, 5, 2, 5, 2, 4, 5, 8, 6, 8, 5, 1, 0, 3, 1, 2, 4, 5, 4, 0, 5, 4, 4, 6, 4, 0, 5, 5, 3, 1, 6, 6, 9, 9, 0, 1, 8, 8, 2, 2, 8, 9, 3, 8, 5, 8, 2, 1, 8, 9, 8, 6, 8, 7, 3, 2, 9, 6, 3, 6, 5, 1, 7, 0, 3, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.2044255015377807131364929398797955...

greatest x: 0.98577638170390045503079405387981...

MATHEMATICA

a = 4; b = -1; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 1}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.21, -.20}, WorkingPrecision -> 110]

RealDigits[r]    (* A200291 *)

r = x /. FindRoot[f[x] == g[x], {x, .98, .99}, WorkingPrecision -> 110]

RealDigits[r]   (* A200292 *)

PROG

(PARI) a=4; b=-1; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 08 2018

CROSSREFS

Cf. A199949.

Sequence in context: A219836 A004174 A300328 * A049797 A116578 A078050

Adjacent sequences:  A200288 A200289 A200290 * A200292 A200293 A200294

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 8 01:25 EDT 2020. Contains 335502 sequences. (Running on oeis4.)