login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200280 Decimal expansion of greatest x satisfying 3*x^2 - 4*cos(x) = 2*sin(x). 3
1, 0, 9, 6, 4, 0, 6, 9, 9, 2, 4, 2, 1, 2, 6, 7, 9, 4, 7, 2, 2, 1, 9, 8, 7, 6, 8, 1, 3, 1, 4, 0, 2, 0, 2, 2, 9, 8, 2, 3, 2, 2, 7, 4, 2, 6, 9, 9, 9, 1, 0, 5, 7, 2, 0, 4, 6, 6, 1, 8, 9, 3, 1, 7, 4, 9, 4, 3, 5, 6, 1, 2, 7, 3, 8, 5, 4, 7, 7, 3, 2, 9, 1, 5, 8, 4, 9, 3, 8, 2, 9, 1, 5, 0, 3, 7, 5, 9, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x: -0.73563807644468208614776955612311...

greatest x: 1.096406992421267947221987681314...

MATHEMATICA

a = 3; b = -4; c = 2;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.74, -.73}, WorkingPrecision -> 110]

RealDigits[r]  (* A200279 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

RealDigits[r]  (* A200280 *)

PROG

(PARI) a=3; b=-4; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 07 2018

CROSSREFS

Cf. A199949.

Sequence in context: A241993 A099817 A262701 * A198363 A253267 A010544

Adjacent sequences:  A200277 A200278 A200279 * A200281 A200282 A200283

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 17 22:32 EDT 2018. Contains 313817 sequences. (Running on oeis4.)