This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200265 Triangle read by rows: coefficients in an asymptotic expansion of the n-th prime. 1
 1, 1, 2, 1, 6, 11, 2, 21, 84, 131, 6, 92, 588, 1908, 2666, 24, 490, 4380, 22020, 62860, 81534, 120, 3084, 35790, 246480, 1075020, 2823180, 3478014, 720, 22428, 322224, 2838570, 16775640, 66811920, 165838848, 196993194 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The asymptotic expansion of p_n, the n-th prime, is p_n ~ n*log n + n*(log log n -1) + n * sum_{k=1}^infty P_k(log log n)*(log n)^{-k}, where P_k(y) = ((-1)^(k+1)/ k!) sum_{r=0}^k (-1)^r a_{k,r} y^{k-r}, and where a_{r,k} are natural numbers. REFERENCES M. Cipolla, "La determinazione asintotica dell'n-mo numero primo.", Rend. d. R. Acc. di sc. fis. e mat. di Napoli, s. 3, VIII (1902), pp. 132-166. LINKS Juan Arias-de-Reyna, Table of n, a(n) for n = 0..1484 J. Arias-de-Reyna, J. Toulisse, The n-th prime asymptotically, arXiv:1203.5413 [math.NT], 2012. P. Dusart, The kth prime is greater than k(ln k+ ln ln k+1) for k>=2, Math. Comp 68 (225) (1999) 411-415 [MR1620223] G. Mincu, An asymptotic expansion J. Ineq. Pure Appl Math. 4 (2) (2003) #30 [MR1994243] B. Salvy, Fast computation of some asymptotic functional inverses, J. Symbolic Comput., 17 (1994), 227-236. N. K. Sinha, On the asymptotic expansion of the sum of the first n primes, arXiv:1011.1667 [math.NT], 2010-2015. FORMULA The polynomials P_k are defined by P_1(y) = y-2, P_2(y) = -(y^2-6y+11)/2, P_n = n*P_{n-1}-P'_{n-1} + (1/n)*sum_{k=1}^{n-1} k[(k-1)P_{k-1}-P_k-P'_{k-1}]P_{n-k-1}, where P_0(y)=y-1. EXAMPLE 1 1,   2 1,   6,   11 2,  21,   84,   131 6,  92,  588,  1908,  2666 24, 490, 4380, 22020, 62860, 81534 See a(n,k) table on top of page 14 of article by Arias-de-Reyna and Toulisse. MATHEMATICA a[0, -1] = a[0, 0] = a[1, 0] = 1; a[1, 1] = 2; a[n_, k_] /; k == n-1 := a[n, k] = n*a[n-1, k-1] + n*(n-1)*a[n-1, n-1]; a[n_, n_] := a[n, n] = a[n-1, n-1]*n^2 + a[n-1, n-2]*n - (n-1)*Sum[Binomial[n-2, k-1]*(k*a[k-1, k-2] + k*(k-1)*a[k-1, k-1] - a[k, k])*a[n-k-1, n-k-1], {k, 1, n-1}]; a[n_, k_] /; k<0 || k>n = 0; a[n_, k_] := a[n, k] = n*a[n-1, k-1] + (n*(n-1)*a[n-1, k])/(n-k); Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 31 2015 *) CROSSREFS Sequence in context: A069114 A173773 A121927 * A039762 A039795 A283746 Adjacent sequences:  A200262 A200263 A200264 * A200266 A200267 A200268 KEYWORD nonn,tabl AUTHOR Juan Arias-de-Reyna, Nov 15 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.