login
A200252
Number of 0..n arrays x(0..2) of 3 elements with each no smaller than the sum of its previous elements modulo (n+1).
5
5, 12, 26, 45, 75, 112, 164, 225, 305, 396, 510, 637, 791, 960, 1160, 1377, 1629, 1900, 2210, 2541, 2915, 3312, 3756, 4225, 4745, 5292, 5894, 6525, 7215, 7936, 8720, 9537, 10421, 11340, 12330, 13357, 14459, 15600, 16820, 18081, 19425, 20812, 22286, 23805
OFFSET
1,1
COMMENTS
Row 3 of A200251.
a(n) = A199771(n+1). - Reinhard Zumkeller, Nov 23 2011
FORMULA
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6).
From Colin Barker, Feb 19 2018: (Start)
G.f.: x*(5 + 2*x - 3*x^2 + x^3 + 2*x^4 - x^5) / ((1 - x)^4*(1 + x)^2).
a(n) = (n^3 + 5*n^2 + 8*n + 4) / 4 for n even.
a(n) = (n^3 + 5*n^2 + 9*n + 5) / 4 for n odd.
(End)
EXAMPLE
Some solutions for n=6:
2 0 0 3 3 1 4 0 1 3 0 3 0 2 1 3
6 5 3 6 3 1 5 2 4 6 6 5 0 5 2 4
2 6 6 2 6 4 4 2 6 5 6 5 6 5 4 0
CROSSREFS
Sequence in context: A367379 A212561 A199771 * A176448 A078517 A170828
KEYWORD
nonn,easy
AUTHOR
R. H. Hardin, Nov 15 2011
STATUS
approved