login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200241 Decimal expansion of least x satisfying 3*x^2 - 3*cos(x) = 4*sin(x), negated. 4
4, 9, 5, 5, 9, 4, 2, 3, 2, 7, 9, 8, 1, 1, 0, 8, 0, 3, 9, 6, 6, 6, 9, 4, 0, 8, 1, 3, 6, 0, 6, 6, 6, 2, 3, 4, 8, 1, 2, 3, 0, 0, 4, 8, 8, 5, 5, 2, 1, 1, 1, 9, 5, 6, 6, 1, 7, 6, 5, 0, 5, 3, 3, 1, 4, 8, 8, 0, 6, 1, 9, 9, 6, 4, 2, 7, 5, 6, 6, 0, 3, 9, 4, 8, 5, 9, 8, 0, 7, 7, 1, 0, 7, 1, 4, 6, 6, 2, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.495594232798110803966694081360666...

greatest x: 1.2559670249437296288542832153976444...

MATHEMATICA

a = 3; b = -3; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.50, -.49}, WorkingPrecision -> 110]

RealDigits[r]   (* A200241 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.25, 1.26}, WorkingPrecision -> 110]

RealDigits[r]   (* A200242 *)

PROG

(PARI) a=3; b=-3; c=4; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

CROSSREFS

Cf. A199949.

Sequence in context: A070434 A011003 A200011 * A243710 A242610 A292484

Adjacent sequences:  A200238 A200239 A200240 * A200242 A200243 A200244

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 15 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 10:46 EDT 2019. Contains 328026 sequences. (Running on oeis4.)