login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200226 Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 3*sin(x). 3
1, 0, 1, 2, 2, 6, 5, 5, 6, 2, 9, 6, 9, 2, 0, 9, 4, 1, 7, 3, 3, 4, 5, 5, 4, 4, 1, 9, 9, 3, 8, 2, 7, 2, 1, 4, 5, 5, 8, 9, 6, 1, 2, 7, 1, 3, 9, 8, 2, 8, 6, 8, 9, 9, 1, 3, 1, 2, 1, 0, 7, 8, 3, 4, 0, 7, 3, 9, 5, 8, 9, 3, 1, 6, 8, 9, 8, 9, 6, 3, 8, 0, 4, 1, 5, 9, 0, 7, 5, 0, 4, 6, 8, 3, 4, 6, 0, 0, 5 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x: -0.25837586008348694859843826122973...

greatest x: 1.012265562969209417334554419938...

MATHEMATICA

a = 3; b = -1; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.26, -.25}, WorkingPrecision -> 110]

RealDigits[r]    (* A200225 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

RealDigits[r]    (* A200226 *)

PROG

(PARI) a=3; b=-1; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018

CROSSREFS

Cf. A199949.

Sequence in context: A181661 A144160 A275142 * A300628 A115255 A055924

Adjacent sequences:  A200223 A200224 A200225 * A200227 A200228 A200229

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 18 14:39 EDT 2019. Contains 322209 sequences. (Running on oeis4.)