login
A200224
Decimal expansion of greatest x satisfying 3*x^2 - cos(x) = 2*sin(x).
3
8, 4, 8, 9, 0, 5, 1, 8, 8, 3, 2, 9, 5, 2, 2, 3, 6, 1, 7, 3, 4, 5, 6, 3, 8, 1, 6, 2, 6, 6, 1, 3, 2, 6, 7, 6, 8, 3, 4, 5, 9, 5, 3, 3, 8, 7, 9, 9, 7, 8, 6, 6, 5, 2, 5, 8, 0, 4, 1, 9, 1, 3, 6, 6, 3, 5, 7, 5, 7, 3, 3, 0, 4, 0, 5, 9, 1, 3, 7, 2, 4, 9, 5, 3, 8, 3, 2, 3, 5, 4, 5, 6, 3, 8, 6, 2, 5, 8, 6
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: -0.3231143338862262845356370492311714...
greatest x: 0.84890518832952236173456381626613...
MATHEMATICA
a = 3; b = -1; c = 2;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, -.33, -.32}, WorkingPrecision -> 110]
RealDigits[r] (* A200223 *)
r = x /. FindRoot[f[x] == g[x], {x, .84, .85}, WorkingPrecision -> 110]
RealDigits[r] (* A200224 *)
PROG
(PARI) a=3; b=-1; c=2; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 30 2018
CROSSREFS
Cf. A199949.
Sequence in context: A202998 A110835 A087015 * A345929 A336065 A124012
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 14 2011
STATUS
approved