login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Product of Fibonacci and Padovan numbers: a(n) = A000045(n+1)*A000931(n+5).
0

%I #31 Mar 25 2024 09:37:14

%S 1,1,2,6,10,24,52,105,238,495,1068,2304,4893,10556,22570,48363,103805,

%T 222224,476634,1021515,2189200,4693415,10058607,21561120,46215400,

%U 99056688,212327858,455105352,975492413,2090916520,4481729501,9606342690,20590584676,44134642493,94599971180

%N Product of Fibonacci and Padovan numbers: a(n) = A000045(n+1)*A000931(n+5).

%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,4,-1,-1,1).

%F G.f.: (1 + x - x^2 - x^3 + x^4) / (1 - 3*x^2 - 4*x^3 + x^4 + x^5 - x^6).

%e G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 10*x^4 + 24*x^5 + 52*x^6 + 105*x^7 +...

%t LinearRecurrence[{0,3,4,-1,-1,1},{1,1,2,6,10,24},40] (* _Harvey P. Dale_, Mar 05 2019 *)

%o (PARI) {a(n)=fibonacci(n+1)*polcoeff((1+x)/(1-x^2-x^3+x*O(x^n)),n)}

%Y Cf. A000045, A000931.

%K nonn,easy

%O 0,3

%A _Paul D. Hanna_, Nov 16 2011