login
A200212
G.f. satisfies: A(x) = exp( Sum_{n>=1} [Sum_{k=0..n} C(n,k)^3 * x^k*A(x)^(n-k)] * x^n/n ).
1
1, 1, 3, 11, 42, 174, 763, 3457, 16075, 76351, 368767, 1805682, 8943948, 44736096, 225646033, 1146461185, 5862224756, 30144922281, 155791900727, 808773877919, 4215675455503, 22054576750972, 115765182718467, 609508331610920, 3218059655553030, 17034314889643633
OFFSET
0,3
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 42*x^4 + 174*x^5 + 763*x^6 +...
where the logarithm of the g.f. A = A(x) equals the series:
log(A(x)) = (A + x)*x + (A^2 + 2^3*x*A + x^2)*x^2/2 +
(A^3 + 3^3*x*A^2 + 3^3*x^2*A + x^3)*x^3/3 +
(A^4 + 4^3*x*A^3 + 6^3*x^2*A^2 + 4^3*x^3*A + x^4)*x^4/4 +
(A^5 + 5^3*x*A^4 + 10^3*x^2*A^3 + 10^3*x^3*A^2 + 5^3*x^4*A + x^5)*x^5/5 +
(A^6 + 6^3*x*A^5 + 15^3*x^2*A^4 + 20^3*x^3*A^3 + 15^3*x^4*A^2 + 6^3*x^5*A + x^6)*x^6/6 +...
more explicitly,
log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 117*x^4/4 + 581*x^5/5 + 2987*x^6/6 + 15499*x^7/7 + 81213*x^8/8 +...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^3*x^j/A^j)*(x*A+x*O(x^n))^m/m))); polcoeff(A, n, x)}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 14 2011
STATUS
approved