login
A200184
Number of -n..n arrays x(0..5) of 6 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern).
1
6, 15, 29, 48, 72, 103, 141, 186, 244, 309, 385, 472, 572, 685, 813, 954, 1110, 1283, 1475, 1682, 1910, 2155, 2421, 2710, 3020, 3351, 3707, 4086, 4492, 4923, 5381, 5864, 6378, 6921, 7493, 8096, 8730, 9395, 10097, 10830, 11598, 12401, 13241, 14118, 15034
OFFSET
1,1
COMMENTS
Row 6 of A200181.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) -a(n-4) -a(n-7) +a(n-9) +a(n-10) -a(n-11) for n>12.
Empirical g.f.: x*(6 + 9*x + 8*x^2 + 4*x^3 + x^4 - 2*x^5 - 5*x^6 - 4*x^7 + 4*x^8 + 5*x^9 - 2*x^11) / ((1 - x)^4*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 20 2018
EXAMPLE
Some solutions for n=6:
..2....3....4....4....6....5....3....2....5....2....3....2....4....6....4....6
..3....4...-1....3...-2....0....1....3....3...-2...-1....1...-2....1....5....0
.-1....5....0....4...-1....1....2...-2....4...-1....0....2...-1....2....6....1
..0...-5....1...-3....0...-3....3...-1...-4....0....1...-1....0...-2...-5...-1
..1...-4....2...-2....1...-2...-5....0...-3....1...-2....0...-1...-1...-4....0
.-5...-3...-6...-6...-4...-1...-4...-2...-5....0...-1...-4....0...-6...-6...-6
CROSSREFS
Cf. A200181.
Sequence in context: A338488 A365418 A180953 * A005286 A298877 A229063
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 13 2011
STATUS
approved