The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200183 Number of -n..n arrays x(0..4) of 5 elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern). 1
 2, 12, 15, 24, 31, 48, 53, 74, 83, 108, 119, 148, 159, 196, 209, 246, 263, 308, 323, 372, 391, 444, 465, 522, 543, 608, 631, 696, 723, 796, 821, 898, 927, 1008, 1039, 1124, 1155, 1248, 1281, 1374, 1411, 1512, 1547, 1652, 1691, 1800, 1841, 1954, 1995, 2116, 2159 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row 5 of A200181. LINKS R. H. Hardin, Table of n, a(n) for n = 1..200 FORMULA Empirical: a(n) = a(n-2) +a(n-3) +a(n-4) -a(n-5) -a(n-6) -a(n-7) +a(n-9) for n>10. Empirical g.f.: x*(2 + 12*x + 13*x^2 + 10*x^3 + 2*x^4 - x^5 - 3*x^6 + 2*x^8 + x^9) / ((1 - x)^3*(1 + x)^2*(1 + x^2)*(1 + x + x^2)). - Colin Barker, May 19 2018 EXAMPLE Some solutions for n=6: ..0....6....5....5....4....3....0....5....2....2....2....1....2....4....2....6 ..1....1...-2....6...-2...-1...-1....6....3....3....3....2...-1....1....3...-1 ..2....2...-1...-3...-1....0....0...-4...-1....4...-2...-2....0....2....0....0 .-2...-5....0...-2....0....1....1...-3....0...-5...-1...-1....1...-4....1...-3 .-1...-4...-2...-6...-1...-3....0...-4...-4...-4...-2....0...-2...-3...-6...-2 CROSSREFS Cf. A200181. Sequence in context: A265485 A166745 A262094 * A118516 A077103 A036499 Adjacent sequences:  A200180 A200181 A200182 * A200184 A200185 A200186 KEYWORD nonn AUTHOR R. H. Hardin, Nov 13 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 11 09:30 EDT 2020. Contains 336423 sequences. (Running on oeis4.)