%I #5 Mar 31 2012 12:36:38
%S 1,1,1,1,2,3,1,3,3,3,1,4,5,6,2,1,5,5,11,12,6,1,6,7,14,15,15,10,1,7,7,
%T 19,24,29,29,7,1,8,9,26,31,48,78,72,12,1,9,9,31,48,72,100,160,133,28,
%U 1,10,11,38,53,103,186,280,283,214,29,1,11,11,47,74,141,246,460,608,574,394
%N T(n,k)=Number of -k..k arrays x(0..n-1) of n elements with zero sum and no two consecutive declines, no adjacent equal elements, and no element more than one greater than the previous (random base sawtooth pattern)
%C Table starts
%C ..1...1...1....1....1....1....1....1.....1.....1.....1.....1.....1.....1.....1
%C ..1...2...3....4....5....6....7....8.....9....10....11....12....13....14....15
%C ..3...3...5....5....7....7....9....9....11....11....13....13....15....15....17
%C ..3...6..11...14...19...26...31...38....47....54....63....74....83....94...107
%C ..2..12..15...24...31...48...53...74....83...108...119...148...159...196...209
%C ..6..15..29...48...72..103..141..186...244...309...385...472...572...685...813
%C .10..29..78..100..186..246..380..464...686...798..1096..1276..1658..1878..2408
%C ..7..72.160..280..460..700.1010.1430..1954..2592..3392..4348..5470..6826..8392
%C .12.133.283..608..891.1573.2152.3430..4429..6531..8124.11410.13787.18525.21952
%C .28.214.574.1094.1934.3247.5014.7552.11060.15511.21380.29006.38248.49885.64294
%H R. H. Hardin, <a href="/A200181/b200181.txt">Table of n, a(n) for n = 1..958</a>
%e Some solutions for n=7 k=6
%e ..2....6....3...-1....1....3....4....2....1....4....6....5....1....1....5....6
%e ..3....1....4....0....2....1....5....3....0....0....0....4....2....2....0...-1
%e ..1....2....2....1...-1....2....6....1....1....1....1....5....3....3....1....0
%e ..2....3....3....2....0....1...-4....2...-1...-1...-2...-4...-1...-2....2...-1
%e ..3...-4...-4...-1....1....2...-3...-3....0....0...-1...-3....0...-1...-2....0
%e .-6...-3...-3....0...-2...-5...-2...-2...-1....1....0...-2...-3...-2...-1....1
%e .-5...-5...-5...-1...-1...-4...-6...-3....0...-5...-4...-5...-2...-1...-5...-5
%Y Row 3 is A063196(n+2)
%K nonn,tabl
%O 1,5
%A _R. H. Hardin_ Nov 13 2011