

A200146


Triangle read by rows: T(n, k) = mod(k^(n  1), n), where 1 <= k < n.


1



1, 1, 1, 1, 0, 3, 1, 1, 1, 1, 1, 2, 3, 4, 5, 1, 1, 1, 1, 1, 1, 1, 0, 3, 0, 5, 0, 7, 1, 4, 0, 7, 7, 0, 4, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 3, 4, 5, 0, 7, 8, 9, 4, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,6


COMMENTS

Per Fermat's Little theorem, if n is prime, then row n is all 1s. However, if n is composite, that does not necessarily guarantee that the first column 1 is the only one in the row.


LINKS

Table of n, a(n) for n=2..79.


EXAMPLE

The first seven rows are
1
1, 1
1, 0, 3
1, 1, 1, 1
1, 2, 3, 4, 5
1, 1, 1, 1, 1, 1
1, 0, 3, 0, 5, 0, 7
We observe that the tenth row consists of the numbers 1 to 9 in order. In base 10, the least significant digit of n^9 is the same as that of n.


MATHEMATICA

Column[Table[Mod[k^(n  1), n], {n, 2, 13}, {k, n  1}], Center] (* Nov 14 2011 *)


CROSSREFS

Cf. A089072, A066340 (Fermat's triangle).
Sequence in context: A030380 A066636 A137578 * A319095 A109390 A130046
Adjacent sequences: A200143 A200144 A200145 * A200147 A200148 A200149


KEYWORD

nonn,easy,tabl


AUTHOR

Alonso del Arte, Nov 13 2011


STATUS

approved



