login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200132 Decimal expansion of least x satisfying 3*x^2 - cos(x) = sin(x), negated. 3
4, 1, 3, 7, 5, 1, 7, 5, 9, 1, 4, 4, 7, 7, 3, 9, 3, 7, 6, 8, 4, 4, 0, 0, 2, 7, 9, 8, 9, 8, 9, 2, 7, 5, 6, 4, 5, 9, 9, 2, 2, 5, 1, 3, 8, 5, 5, 5, 7, 8, 6, 6, 1, 8, 6, 3, 7, 5, 1, 5, 2, 8, 7, 7, 7, 8, 7, 6, 3, 1, 5, 3, 2, 0, 3, 3, 8, 4, 9, 9, 6, 1, 7, 4, 1, 5, 9, 0, 0, 6, 9, 1, 1, 8, 7, 6, 2, 3, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x: -0.4137517591447739376844002798989...

greatest x: 0.68485307862320115956369446864...

MATHEMATICA

a = 3; b = -1; c = 1;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.42, -.41}, WorkingPrecision -> 110]

RealDigits[r]   (* A200132 *)

r = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110]

RealDigits[r]   (* A200133 *)

PROG

(PARI) a=3; b=-1; c=1; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 05 2018

CROSSREFS

Cf. A199949.

Sequence in context: A210583 A200171 A109531 * A073817 A074081 A132703

Adjacent sequences:  A200129 A200130 A200131 * A200133 A200134 A200135

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 23 05:42 EDT 2021. Contains 343199 sequences. (Running on oeis4.)