login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200131 Decimal expansion of greatest x satisfying 2*x^2 - 4*cos(x) = 3*sin(x). 3
1, 3, 6, 8, 1, 4, 9, 1, 1, 2, 0, 4, 2, 0, 6, 7, 6, 6, 7, 9, 9, 7, 6, 9, 9, 1, 0, 8, 8, 9, 0, 6, 9, 2, 6, 6, 7, 5, 9, 0, 3, 6, 3, 8, 6, 9, 7, 9, 8, 2, 3, 5, 6, 8, 8, 7, 6, 8, 3, 8, 1, 0, 1, 7, 8, 4, 0, 2, 0, 0, 9, 5, 7, 2, 9, 5, 6, 3, 9, 7, 4, 8, 1, 6, 1, 3, 1, 7, 9, 1, 3, 4, 2, 8, 1, 1, 0, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x: -0.719005064558842927859271780848179382...

greatest x: 1.368149112042067667997699108890...

MATHEMATICA

a = 2; b = -4; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -3, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -.72, -.71}, WorkingPrecision -> 110]

RealDigits[r]  (* A200130 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.36, 1.37}, WorkingPrecision -> 110]

RealDigits[r]   (* A200131 *)

PROG

(PARI) a=2; b=-4; c=3; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jul 01 2018

CROSSREFS

Cf. A199949.

Sequence in context: A256372 A133442 A133193 * A298907 A181909 A181917

Adjacent sequences:  A200128 A200129 A200130 * A200132 A200133 A200134

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 14 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 16:16 EDT 2019. Contains 322430 sequences. (Running on oeis4.)