%I #14 Feb 12 2025 04:51:45
%S 1,4,5,0,9,3,8,4,4,9,6,3,4,9,7,4,4,3,1,1,2,8,2,8,5,5,7,6,6,9,0,3,5,7,
%T 7,3,8,9,4,4,7,4,8,7,0,1,1,5,3,4,6,3,9,8,7,6,5,4,2,3,5,8,6,2,6,2,9,6,
%U 1,9,2,8,4,3,0,8,1,3,5,0,5,9,1,7,2,0,8,4,3,0,4,9,7,0,9,4,6,6,0
%N Decimal expansion of greatest x satisfying x^2 - cos(x) = 2*sin(x).
%C See A199949 for a guide to related sequences. The Mathematica program includes a graph.
%H G. C. Greubel, <a href="/A200013/b200013.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%e least x: -0.3941241928589759600997053993545900...
%e greatest x: 1.450938449634974431128285576690357...
%t a = 1; b = -1; c = 2;
%t f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
%t Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]
%t r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]
%t RealDigits[r] (* A200012 *)
%t r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
%t RealDigits[r] (* A200013 *)
%o (PARI) a=1; b=-1; c=2; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018
%Y Cf. A199949.
%K nonn,cons,changed
%O 1,2
%A _Clark Kimberling_, Nov 12 2011