login
Decimal expansion of least x satisfying x^2 - cos(x) = 2*sin(x) (negated).
3

%I #14 Jun 24 2018 16:41:56

%S 3,9,4,1,2,4,1,9,2,8,5,8,9,7,5,9,6,0,0,9,9,7,0,5,3,9,9,3,5,4,5,9,0,0,

%T 9,8,5,3,6,9,2,2,4,9,6,1,9,3,9,1,2,2,9,7,9,2,1,9,8,4,8,1,1,6,8,5,3,1,

%U 1,8,7,4,1,7,6,0,2,4,8,1,7,9,3,5,8,3,4,5,6,0,3,0,7,1,7,9,2,1,5

%N Decimal expansion of least x satisfying x^2 - cos(x) = 2*sin(x) (negated).

%C See A199949 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A200012/b200012.txt">Table of n, a(n) for n = 0..10000</a>

%e least x: -0.3941241928589759600997053993545900...

%e greatest x: 1.450938449634974431128285576690357738...

%t a = 1; b = -1; c = 2;

%t f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

%t Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, -.4, -.3}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200012 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200013 *)

%o (PARI) a=1; b=-1; c=2; solve(x=-1, 0, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018

%Y Cf. A199949.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 12 2011