login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200009 Decimal expansion of greatest x satisfying 4*x^2 + cos(x) = 4*sin(x). 3
5, 9, 2, 4, 7, 0, 2, 9, 0, 7, 9, 2, 5, 0, 3, 9, 3, 2, 9, 3, 1, 2, 8, 2, 2, 7, 6, 2, 8, 8, 0, 6, 3, 2, 4, 8, 3, 9, 9, 2, 9, 0, 6, 5, 3, 9, 7, 4, 8, 6, 4, 5, 5, 8, 1, 0, 3, 1, 3, 1, 1, 7, 5, 0, 1, 1, 5, 9, 3, 8, 8, 5, 9, 1, 7, 1, 8, 4, 8, 5, 2, 6, 8, 7, 3, 3, 8, 7, 8, 5, 7, 1, 8, 6, 2, 9, 6, 0, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x:  0.4039548562770990578793534464221104111...

greatest x: 0.59247029079250393293128227628806324...

MATHEMATICA

a = 4; b = 1; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, .3, .7}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .40, .41}, WorkingPrecision -> 110]

RealDigits[r]  (* A200008 *)

r = x /. FindRoot[f[x] == g[x], {x, .59, .60}, WorkingPrecision -> 110]

RealDigits[r]  (* A200009 *)

PROG

(PARI) a=4; b=1; c=4; solve(x=.5, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

CROSSREFS

Cf. A199949.

Sequence in context: A248191 A323985 A198734 * A303662 A011494 A214395

Adjacent sequences:  A200006 A200007 A200008 * A200010 A200011 A200012

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 25 05:06 EDT 2019. Contains 326318 sequences. (Running on oeis4.)