This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A200006 Decimal expansion of least x satisfying 3*x^2 + cos(x) = 4*sin(x). 3
 3, 1, 9, 1, 6, 5, 5, 8, 4, 4, 9, 3, 9, 5, 6, 1, 1, 4, 5, 0, 9, 4, 4, 8, 2, 8, 0, 4, 6, 1, 2, 3, 8, 7, 8, 6, 4, 5, 0, 7, 4, 1, 1, 2, 3, 8, 1, 1, 0, 4, 6, 5, 8, 9, 6, 6, 4, 5, 3, 7, 3, 6, 2, 4, 0, 6, 0, 0, 9, 7, 9, 2, 3, 1, 2, 2, 5, 3, 6, 7, 3, 1, 2, 1, 1, 7, 2, 2, 3, 0, 9, 5, 8, 1, 8, 9, 0, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A199949 for a guide to related sequences.  The Mathematica program includes a graph. LINKS G. C. Greubel, Table of n, a(n) for n = 0..10000 EXAMPLE least x:  0.31916558449395611450944828046123878... greatest x: 0.9357819545602016906476903567483506551... MATHEMATICA a = 3; b = 1; c = 4; f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] Plot[{f[x], g[x]}, {x, -1, 2}, {AxesOrigin -> {0, 0}}] r = x /. FindRoot[f[x] == g[x], {x, .31, .32}, WorkingPrecision -> 110] RealDigits[r]  (* A200006 *) r = x /. FindRoot[f[x] == g[x], {x, .93, .94}, WorkingPrecision -> 110] RealDigits[r]  (* A200007 *) PROG (PARI) a=3; b=1; c=4; solve(x=0, .5, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018 CROSSREFS Cf. A199949. Sequence in context: A325375 A317202 A197259 * A070894 A090261 A303552 Adjacent sequences:  A200003 A200004 A200005 * A200007 A200008 A200009 KEYWORD nonn,cons AUTHOR Clark Kimberling, Nov 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 15 16:12 EDT 2019. Contains 327078 sequences. (Running on oeis4.)