login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200005 Decimal expansion of greatest x satisfying 2*x^2 + cos(x) = 4*sin(x). 3
1, 3, 6, 0, 8, 3, 2, 2, 5, 5, 3, 9, 0, 6, 6, 8, 9, 0, 4, 6, 7, 1, 8, 3, 9, 2, 8, 5, 6, 9, 1, 3, 2, 6, 3, 6, 8, 8, 2, 5, 4, 9, 7, 9, 2, 6, 2, 5, 5, 0, 8, 5, 8, 3, 1, 1, 0, 7, 4, 1, 3, 2, 6, 7, 8, 2, 0, 6, 1, 0, 6, 2, 3, 0, 1, 3, 9, 9, 4, 2, 4, 7, 4, 6, 2, 9, 0, 5, 6, 4, 0, 9, 9, 1, 4, 8, 2, 9, 9 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  0.2841554251771481491680536288735443310...

greatest x: 1.36083225539066890467183928569132636...

MATHEMATICA

a = 2; b = 1; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .28, .29}, WorkingPrecision -> 110]

RealDigits[r]   (* A200004 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]

RealDigits[r]   (* A200005 *)

PROG

(PARI) a=2; b=1; c=4; solve(x=1, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

CROSSREFS

Cf. A199949.

Sequence in context: A199182 A011368 A020811 * A153097 A271854 A077086

Adjacent sequences:  A200002 A200003 A200004 * A200006 A200007 A200008

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 13:27 EDT 2020. Contains 336504 sequences. (Running on oeis4.)