login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A200004 Decimal expansion of least x satisfying 2*x^2 + cos(x) = 4*sin(x). 3

%I

%S 2,8,4,1,5,5,4,2,5,1,7,7,1,4,8,1,4,9,1,6,8,0,5,3,6,2,8,8,7,3,5,4,4,3,

%T 3,1,0,5,0,2,6,1,5,3,6,0,2,5,8,1,3,5,3,6,8,0,9,3,6,7,6,7,1,4,5,7,3,3,

%U 4,3,5,2,2,1,4,0,1,8,7,8,6,5,4,8,3,5,5,8,2,8,9,0,5,2,9,2,9,0,6

%N Decimal expansion of least x satisfying 2*x^2 + cos(x) = 4*sin(x).

%C See A199949 for a guide to related sequences. The Mathematica program includes a graph.

%H G. C. Greubel, <a href="/A200004/b200004.txt">Table of n, a(n) for n = 0..10000</a>

%e least x: 0.2841554251771481491680536288735443310...

%e greatest x: 1.36083225539066890467183928569132636...

%t a = 2; b = 1; c = 4;

%t f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

%t Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}]

%t r = x /. FindRoot[f[x] == g[x], {x, .28, .29}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200004 *)

%t r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]

%t RealDigits[r] (* A200005 *)

%o (PARI) a=2; b=1; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018

%Y Cf. A199949.

%K nonn,cons

%O 0,1

%A _Clark Kimberling_, Nov 12 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 28 02:07 EDT 2020. Contains 337392 sequences. (Running on oeis4.)