login
A200004
Decimal expansion of least x satisfying 2*x^2 + cos(x) = 4*sin(x).
3
2, 8, 4, 1, 5, 5, 4, 2, 5, 1, 7, 7, 1, 4, 8, 1, 4, 9, 1, 6, 8, 0, 5, 3, 6, 2, 8, 8, 7, 3, 5, 4, 4, 3, 3, 1, 0, 5, 0, 2, 6, 1, 5, 3, 6, 0, 2, 5, 8, 1, 3, 5, 3, 6, 8, 0, 9, 3, 6, 7, 6, 7, 1, 4, 5, 7, 3, 3, 4, 3, 5, 2, 2, 1, 4, 0, 1, 8, 7, 8, 6, 5, 4, 8, 3, 5, 5, 8, 2, 8, 9, 0, 5, 2, 9, 2, 9, 0, 6
OFFSET
0,1
COMMENTS
See A199949 for a guide to related sequences. The Mathematica program includes a graph.
LINKS
EXAMPLE
least x: 0.2841554251771481491680536288735443310...
greatest x: 1.36083225539066890467183928569132636...
MATHEMATICA
a = 2; b = 1; c = 4;
f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]
Plot[{f[x], g[x]}, {x, -.1, 2}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, .28, .29}, WorkingPrecision -> 110]
RealDigits[r] (* A200004 *)
r = x /. FindRoot[f[x] == g[x], {x, 1.3, 1.4}, WorkingPrecision -> 110]
RealDigits[r] (* A200005 *)
PROG
(PARI) a=2; b=1; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018
CROSSREFS
Cf. A199949.
Sequence in context: A030345 A264818 A264709 * A253634 A152626 A093823
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Nov 12 2011
STATUS
approved