login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199961 Decimal expansion of least x satisfying x^2 + 3*cos(x) = 4*sin(x). 3
7, 5, 8, 9, 6, 2, 2, 0, 3, 5, 1, 7, 6, 9, 6, 8, 5, 1, 8, 5, 7, 1, 9, 8, 2, 8, 6, 0, 5, 6, 1, 0, 5, 0, 9, 2, 5, 9, 4, 9, 0, 2, 6, 0, 7, 0, 3, 6, 4, 4, 6, 6, 1, 4, 5, 8, 2, 5, 7, 3, 8, 3, 9, 2, 8, 9, 8, 3, 0, 8, 4, 2, 6, 2, 3, 5, 4, 9, 1, 4, 6, 4, 9, 2, 4, 6, 1, 2, 2, 8, 2, 3, 9, 2, 9, 2, 2, 4, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A199949 for a guide to related sequences. The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

EXAMPLE

least x:  0.7589622035176968518571982860561050925949...

greatest x: 2.23580928206456912111526414831701984424...

MATHEMATICA

a = 1; b = 3; c = 4;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, .75, .76}, WorkingPrecision -> 110]

RealDigits[r]   (* A199961 *)

r = x /. FindRoot[f[x] == g[x], {x, 2.2, 2.3}, WorkingPrecision -> 110]

RealDigits[r]   (* A199962 *)

PROG

(PARI) a=1; b= 3; c=4; solve(x=0, 1, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 23 2018

CROSSREFS

Cf. A199949.

Sequence in context: A081815 A115372 A277682 * A195059 A195493 A195399

Adjacent sequences:  A199958 A199959 A199960 * A199962 A199963 A199964

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 02:07 EDT 2019. Contains 326136 sequences. (Running on oeis4.)