login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199960 Decimal expansion of greatest x satisfying x^2+3*cos(x)=3*sin(x). 3
1, 9, 9, 0, 5, 0, 3, 4, 6, 1, 6, 6, 8, 4, 9, 3, 8, 3, 5, 5, 8, 1, 8, 7, 6, 0, 2, 2, 2, 0, 4, 4, 1, 2, 4, 7, 6, 3, 6, 9, 4, 5, 1, 1, 6, 7, 7, 1, 8, 2, 5, 3, 6, 2, 0, 8, 9, 8, 8, 7, 5, 4, 8, 8, 9, 7, 0, 7, 6, 6, 2, 2, 9, 2, 7, 5, 9, 1, 9, 6, 3, 0, 3, 2, 0, 2, 8, 2, 0, 8, 9, 2, 5, 5, 7, 4, 8, 1, 0 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A199949 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least x:  1.046472542540093403618073553786437093400...

greatest x: 1.9905034616684938355818760222044124763...

MATHEMATICA

a = 1; b = 3; c = 3;

f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x]

Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, 1.0, 1.1}, WorkingPrecision -> 110]

RealDigits[r]   (* A199959 *)

r = x /. FindRoot[f[x] == g[x], {x, 1.99, 2.0}, WorkingPrecision -> 110]

RealDigits[r]   (* A199960 *)

PROG

(PARI) a=1; b=3; c=3; solve(x=1.9, 2, a*x^2 + b*cos(x) - c*sin(x)) \\ G. C. Greubel, Jun 22 2018

CROSSREFS

Cf. A199949.

Sequence in context: A176536 A302711 A021838 * A257176 A324859 A090655

Adjacent sequences:  A199957 A199958 A199959 * A199961 A199962 A199963

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 20 17:50 EDT 2019. Contains 328268 sequences. (Running on oeis4.)