The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199933 Trisection 0 of A199744. 1
 1, 1, -4, 0, 20, -25, -71, 216, 94, -1220, 1037, 4941, -11440, -11008, 72112, -33453, -326675, 577060, 950750, -4129272, 279257, 20740793, -27217100, -72078336, 228625372, 83808415, -1271796511, 1153458144, 5060707454, -12183603100, -10694679515, 75519944325, -39290857304, -336819940736 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Hirschhorn, Michael D., Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324. Index entries for linear recurrences with constant coefficients, signature (-1,-5,1,-1). FORMULA From Colin Barker, Dec 27 2017: (Start) G.f.: (1 + 2*x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4). a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3. (End) MATHEMATICA CoefficientList[ Series[(1 +2x +2x^2)/(1 +x +5x^2 -x^3 +x^4), {x, 0, 33}], x] (* or *) LinearRecurrence[{-1, -5, 1, -1}, {1, 1, -4, 0}, 33] (* Robert G. Wilson v, Dec 27 2017 *) PROG (PARI) Vec((1 + 2*x + 2*x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017 CROSSREFS Sequence in context: A284136 A284178 A286032 * A078630 A178671 A179270 Adjacent sequences:  A199930 A199931 A199932 * A199934 A199935 A199936 KEYWORD sign,easy AUTHOR N. J. A. Sloane, Nov 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 02:14 EDT 2020. Contains 336310 sequences. (Running on oeis4.)