login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199931 Trisection 1 of A199803. 1
-1, 2, 4, -15, -2, 79, -88, -294, 815, 488, -4769, 3438, 20080, -42527, -49666, 278943, -93220, -1308634, 2103343, 4067664, -15799793, -1126550, 82089836, -96324543, -299451394, 864290495, 454552096, -4979131422, 3870112831, 20615805880, -45400053553, -48829731594, 292575692408 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Hirschhorn, Michael D., Non-trivial intertwined second-order recurrence relations, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324.

Index entries for linear recurrences with constant coefficients, signature (-1,-5,1,-1).

FORMULA

From Colin Barker, Dec 27 2017: (Start)

G.f.: -(1 - x - x^2) / (1 + x + 5*x^2 - x^3 + x^4).

a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.

(End)

MATHEMATICA

CoefficientList[ Series[(-1 +x +x^2)/(1 +x +5x^2 -x^3 +x^4), {x, 0, 30}], x] (* or *)

LinearRecurrence[{-1, -5, 1, -1}, {-1, 2, 4, -15}, 30] (* Robert G. Wilson v, Dec 27 2017 *)

PROG

(PARI) Vec(-(1 - x - x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ Colin Barker, Dec 27 2017

CROSSREFS

Sequence in context: A123052 A064773 A147870 * A163361 A278873 A278901

Adjacent sequences:  A199928 A199929 A199930 * A199932 A199933 A199934

KEYWORD

sign,easy

AUTHOR

N. J. A. Sloane, Nov 12 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 04:44 EST 2019. Contains 329248 sequences. (Running on oeis4.)