login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A199929 Trisection 2 of A199802. 1

%I

%S 2,-4,-5,27,-8,-128,200,405,-1525,-172,8002,-9072,-29585,83119,47732,

%T -483840,357884,2025929,-4346921,-4941000,28343650,-10011500,

%U -132300829,215642979,407506016,-1608010240,-81576032,8313490269,-9921126365,-30119890772,88120588898,44244248328,-505045957225

%N Trisection 2 of A199802.

%H Colin Barker, <a href="/A199929/b199929.txt">Table of n, a(n) for n = 0..1000</a>

%H Hirschhorn, Michael D., <a href="http://www.fq.math.ca/43-4.html">Non-trivial intertwined second-order recurrence relations</a>, Fibonacci Quart. 43 (2005), no. 4, 316-325. See p. 324.

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-5,1,-1).

%F From _Colin Barker_, Dec 27 2017: (Start)

%F G.f.: (2 - 2*x + x^2) / (1 + x + 5*x^2 - x^3 + x^4).

%F a(n) = -a(n-1) - 5*a(n-2) + a(n-3) - a(n-4) for n>3.

%F (End)

%t LinearRecurrence[{-1,-5,1,-1},{2,-4,-5,27},40] (* _Harvey P. Dale_, May 26 2018 *)

%o (PARI) Vec((2 - 2*x + x^2) / (1 + x + 5*x^2 - x^3 + x^4) + O(x^40)) \\ _Colin Barker_, Dec 27 2017

%K sign,easy

%O 0,1

%A _N. J. A. Sloane_, Nov 12 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 23:00 EST 2019. Contains 329305 sequences. (Running on oeis4.)