The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A199880 Engel expansion of x value of the unique pairwise intersection on (0,1) of distinct order 5 power tower functions with parentheses inserted. 2
 3, 4, 8, 12, 15, 33, 70, 4338, 22062, 46566, 98091, 255284, 2715877, 10855925, 150153128, 10009347774, 34679420772, 43644678207, 74587800101, 229110893125, 233558717156, 286861037311, 299617642336, 312870987050, 1632483095154, 31761226898013, 66327161231576 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Cf. A006784 for definition of Engel expansion. REFERENCES F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191. LINKS F. Engel, Entwicklung der Zahlen nach Stammbrüchen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmänner in Marburg, 1913, pp. 190-191. English translation by Georg Fischer, included with his permission. P. Erdős and Jeffrey Shallit, New bounds on the length of finite Pierce and Engel series, Sem. Theor. Nombres Bordeaux (2) 3 (1991), no. 1, 43-53. Eric Weisstein's World of Mathematics, Engel Expansion Wikipedia, Engel Expansion EXAMPLE 0.42801103796472992390204... MAPLE f:= x-> (x^(x^x))^(x^x): g:= x-> x^(x^((x^x)^x)): Digits:= 700: xv:= fsolve(f(x)=g(x), x=0..0.99): engel:= (r, n)-> `if`(n=0 or r=0, NULL, [ceil(1/r), engel(r*ceil(1/r)-1, n-1)][]): engel(xv, 39); CROSSREFS Cf. A199814 (decimal expansion), A199879 (continued fraction). Sequence in context: A022432 A271474 A120116 * A063227 A293462 A190158 Adjacent sequences:  A199877 A199878 A199879 * A199881 A199882 A199883 KEYWORD nonn AUTHOR Alois P. Heinz, Nov 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 09:47 EST 2020. Contains 338945 sequences. (Running on oeis4.)