login
A199854
Primes of the form 1 + m^2 + n^2 with gcd(m,n)=1.
1
3, 11, 59, 83, 107, 131, 179, 227, 251, 347, 443, 467, 563, 587, 971, 1019, 1091, 1187, 1259, 1283, 1307, 1451, 1523, 1571, 1619, 1811, 1907, 1931, 2027, 2099, 2411, 2459, 2579, 2819, 2939, 2963, 3203, 3251, 3299, 3371, 3467, 3491, 3539, 3779, 3803, 3923, 3947
OFFSET
1,1
LINKS
J. Wu, Primes of the form 1 + m^2 + n^2 in short intervals, Proc. Amer. Math. Soc. 126 (1998), 1-8.
EXAMPLE
First such decompositions are 3 = 1 + 1^2 + 1^2, 11 = 1 + 1^2 + 3^2, 59 = 1 + 3^2 + 7^2.
First instance of several decompositions for the same prime: 131 = 1 + 3^2 + 11^2 = 1 + 7^2 + 9^2.
MAPLE
filter:= proc(n) local S, x, y;
if not isprime(n) then return false fi;
S:= map(t -> subs(t, [x, y]), [isolve](x^2 + y^2 = n-1));
ormap(t -> t[1] > 0 and t[2] >= t[1] and igcd(t[1], t[2])=1, S)
end proc:
select(filter, [seq(i, i=3..5000, 2)]); # Robert Israel, Sep 30 2024
PROG
(PARI) hasform(p) = {q = p - 1; for (k = 1, q/2, if (issquare(k) && issquare(q-k) && (gcd(k, q-k)==1), return(1)); ); return(0); }
CROSSREFS
Cf. A056899 (when the decomposition has m=1).
Sequence in context: A164291 A137690 A107007 * A242384 A225809 A267607
KEYWORD
nonn
AUTHOR
Michel Marcus, Dec 22 2012
STATUS
approved