login
A199850
Number of -n..n arrays x(0..5) of 6 elements with zero sum and no element more than one greater than the previous.
1
63, 192, 428, 845, 1532, 2600, 4188, 6465, 9634, 13932, 19636, 27065, 36582, 48598, 63576, 82029, 104530, 131710, 164262, 202945, 248586, 302082, 364406, 436607, 519814, 615238, 724178, 848019, 988240, 1146414, 1324210, 1523399, 1745856
OFFSET
1,1
COMMENTS
Row 6 of A199847.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) -2*a(n-2) -a(n-3) +2*a(n-5) -a(n-6) -a(n-7) +2*a(n-8) -a(n-10) -2*a(n-11) +3*a(n-12) -a(n-13) for n>14.
Empirical g.f.: x*(63 + 3*x - 22*x^2 + 8*x^3 + 45*x^4 - 4*x^5 - 24*x^6 + 32*x^7 + 19*x^8 - 27*x^9 - 43*x^10 + 39*x^11 + 8*x^12 - 9*x^13) / ((1 - x)^6*(1 + x)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)). - Colin Barker, May 16 2018
EXAMPLE
Some solutions for n=6:
..5....6....5....5....2....1....3....2....3....1....2....4....4....4....2....5
..4...-2....6....0....3....2....1....3....3...-1....0....2....4....3....3....0
..2...-1....1...-1....3....3...-2....2....3...-1....1....0....2....2....0....1
.-4....0...-1....0....1....0...-1....0...-2....0....2....0...-4...-2...-2...-1
.-3....0...-6...-2...-3...-3....0...-4...-2....1....0...-1...-3...-2...-1...-1
.-4...-3...-5...-2...-6...-3...-1...-3...-5....0...-5...-5...-3...-5...-2...-4
CROSSREFS
Cf. A199847.
Sequence in context: A255568 A143033 A156527 * A055811 A035329 A097973
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 11 2011
STATUS
approved