%I #7 Aug 01 2014 13:15:53
%S 4,114,646,2146,5390,11384,21364,36796,59376,91030,133914,190414,
%T 263146,354956,468920,608344,776764,977946,1215886,1494810,1819174,
%U 2193664,2623196,3112916,3668200,4294654,4998114,5784646,6660546,7632340,8706784
%N Number of -n..n arrays x(0..4) of 5 elements with zero sum and no two neighbors summing to zero
%C Row 3 of A199832
%H R. H. Hardin, <a href="/A199834/b199834.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = (115/12)*n^4 - (29/6)*n^3 + (5/12)*n^2 - (7/6)*n.
%F Empirical: G.f.: -2*x*(2+47*x+58*x^2+8*x^3) / (x-1)^5. - _R. J. Mathar_, Aug 01 2014
%e Some solutions for n=3
%e ..3....3....0....2....1....1....2...-1...-3...-2....0....0...-1...-1....2...-1
%e ..2...-1...-3....1...-2....2....1....3...-3....0....3...-2...-2...-3...-1...-1
%e .-3....0....0....1....0...-1....0....0....1....3...-2....0....1...-2...-2...-3
%e ..1...-1....1...-2...-1...-3...-2...-3....3....0....1....3....2....3....1....2
%e .-3...-1....2...-2....2....1...-1....1....2...-1...-2...-1....0....3....0....3
%K nonn
%O 1,1
%A _R. H. Hardin_ Nov 11 2011